SIP Intrusion Detection and Prevention:
Recommendations and Prototype

Saverio Niccolini
NEC Europe Ltd., Network Laboratories
saverio.niccolini@netlab.nec.de
Security Threats

- **VoIP protocols (like SIP) are vulnerable to many attacks**
 - Interruption of Service attacks (Denial of Service, DoS)
 - attacks against infrastructures and terminals
 - Social attacks (SPam over Internet Telephony, SPIT)
 - disturbances and interruptions of work by ringing phone for unsolicited calls
 - Fraud
 - placing calls on other customer's bills, etc.
 - Interception (wire tapping) and Modification of calls
 - conversations may be intercepted (lack of confidentiality)
 - conversations may be modified (lack of integrity)
- see VOIPSA taxonomy
Security Threats: available solutions?

• Standard security mechanisms
 – See talk of this morning by Cullen Jennings

• Intrusion Detection and Prevention systems (IDS/IPS) needed on top of such standards
 – to better secure the deployment
 • block the attackers bypassing security mechanisms
 – should control both signaling and media path
 • correlation needed among the two paths
 – media communication can be routed independently of the call setup path
 – three common types of IDS systems
 • host-based
 • network-based
 • stack-based
 – IPS systems can take immediate action

• techniques
 • signatures (knowledge-based)
 • statistical observation (behavior-based)
VoIP Intrusion detection and prevention

• Attacks to traditional server oriented applications
 – the security target is only the server
 • e.g. HTTP, FTP, E-MAIL

• VoIP deployments have different characteristics
 – a much higher number of systems to be protected
 • VoIP servers, e.g. Proxies and Gateways
 • terminals
 – stricter requirements in terms of security checks
 • no need of sending high rates of messages
 • few messages are able to cause crashes or reboots
Which IDS/IPS for VoIP?

- **Network-based IDS**
 - good matching of requirements
- **Host-based/Stack-based**
 - not scalable (unless you want to protect only some servers)
- **Techniques**
 - knowledge-based first
 - blocking malicious traffic
 - behavior-based second
 - statistical analysis
- **Knowledge-based techniques share info with behavior-based**
 - writing info in a shared memory area
 - IP addresses
 - SIP URIs
 - Ports
 - Message rate
 - increase in scalability (message known to be malicious are already filtered out)
 - decrease in false positives
Network-based IDS

- Must be implemented in devices able to observe the traffic to be analyzed
 - the entry point of the SIP network is the most suited point
- SIP devices
 - SIP-aware firewall
 - Peering points
 - Session Border Controllers (SBCs)
 - B2BUA in SIP
 - SIP gateways
SIP IDS/IPS prototype

- We used Snort Inline framework
- Snort is capable of performing real-time traffic analysis and packet logging
 - acts only as IDS (can only detect, not block packets)
 - it perform protocol analysis and content searching/matching
- Using Snort Inline as IPS
 - modification and blocking of packets (accepts packets from IPTABLES using the ip_queue module)
 - works in bridge modality, invisible to attackers
Snort architecture

- **Output block**
 - manages the log output
 - output log is configurable (e.g. text files, databases or user-defined)

- **Detection Engine block**
 - analysis of protocols of any layer using signatures and rules
 - stateless mode
 - rule sets defined before start time

- **Preprocessors block**
 - analysis of protocols of any layer using custom made C/C++ programs
 - stateful mode

- **Decoder block**
 - syntax analysis at layer 2, 3 and 4 of the IP packet (MAC, IP and TCP/UDP)
 - Layer 2, 3 and 4 headers are inserted in a shared portion of memory

- **Packet Capture block**
 - capture the packets, it uses either libpcap or iptables depending on the Snort mode
SIP IDS/IPS prototype software (I)

- SIP preprocessor wrote from scratch
- It uses oSIP libraries
- What it does
 - SIP syntax analysis (parsing)
 - Security check
 - looks at mandatory fields in a SIP message
 - Stateful analysis (soft states are used)
 - it computes message rate and compare them to a threshold
 - by looking at SIP URIs
 - by looking at IP addresses
 - it is customizable to prevent specific DoS/SPIT attacks
 - Generation of logs of suspicious packets in a tcpdump format
 - can be later analyzed using Ethereal
 - can be exported to correlate with media analysis
Examples of additional features implemented

• **Blocking SPIT attacks**
 – checking the INVITE rate
 • of a SIP URI
 • of a source IP address
 – configurable thresholds if UA or Proxy Server

• **Blocking DoS attacks**
 – checking total SIP message rate
 • of a SIP caller
 • of a source IP address
 – configurable thresholds if UA or Proxy Server

• **Blocking Call Tear-Down attacks**
 – checking that CANCEL/BYE comes from one of the parties involved in the call
 • looking at IP addresses
 – this attack can be done only spoofing To; From; Call-ID fields
Blocking Call Tear-Down attacks

SIP packet

(\text{url1}_\text{from}=\text{url2}_\text{from}) \quad \text{or} \quad (\text{url1}_\text{to}=\text{url2}_\text{to})

\text{yes} \quad \text{cid1}=\text{cid2}

\text{yes} \quad \text{CANCEL}

\text{yes}

\text{no} \quad \text{IP}_\text{src}_1=\text{IP}_\text{src}_2

\text{generate alert and/or drop packet}
Prototype testing

• What happens to QoS of communications?
 – We stressed the IDS/IPS knowledge-based techniques generating malformed messages with different rates
 • wrote SIP plug-in generator for BRUTE
 – high performance packet generator
 – precise message rate
 – RTP media session between UA1 and UA2 at the same time
 • mean end-to-end delay
 • packet losses
 • mean jitter
 • packets with jitter > 50 ms

• Experimental set-up
 – SIP proxy (SIP Express Router, SER)
 – SIP UAs (Kphone)
 • running on Linux OS
 GPS-synchronized to compute One Way Delay
 – Attacker (BRUTE generator)
End-to-end delay

- Message generation rate lower than 860 mps
 - mean end-to-end delay introduced by IDS/IPS ok
- Message generation rate higher than 860 mps
 - ip_queue module receiving packets from the iptables becomes full

- Other parameters
 - rate < 860 mps
 - no packet losses
 - mean jitter: 180 µs
 - jitter > 50 ms: 10 out of 15000 packets
Conclusions/Future work

• Guidelines for IDS/IPS for VoIP deployments
• Prototype implementation on top of Snort framework
• SIP plug-in for high performance tool (BRUTE)
• Evaluation of prototype implementation

• Future work
 – hybrid solution with knowledge-based checks implemented at OS kernel level (modification to iptables)
 • behavior-based techniques still in user space because of the flexibility required
 – modeling VoIP-specific DoS attacks
 – modeling VoIP communications
 – advanced stateful analysis
 – statistical pattern filter
 – signaling/media correlation