Overview

• ZRTP is the protocol for Phil Zimmermann’s Zfone
• Further documentation at http://www.philzimmermann.com/
Zfone

• Beta software available
 – www.philzimmermann.com
• Functions as a “bump in the cord” for SIP-VOIP clients
 – Supports Gizmo, eyeBeam, etc.
• Intercepts RTP stream, and converts to ZRTP
• Modeled after PGPfone, Eric Blossom’s COMSEC phone, AT&T 3600
• Protocol that implements Zfone
• Needs no PKI
 – Conceptually similar to SSH
 – Uses AES + 3kbit Diffie-Hellman Exchange
 – Hash commitment + chain of retained shared secrets
 • Allows voice-based Man-in-the-Middle rejection
 • Creates continuity between endpoints
• Independent of signaling layer
 – Can operate with other VOIP systems
Advantages

• Simple media encryption
• Well-tested components
 – SRTP, DH, hash commitment
• Layers with other security
• Even with no user-level MitM protection, protocol has endpoint continuity
 – MitM needs to be on first call, and stay in all calls to avoid detection
 • Note -- in some cases can force shared secret loss
What ZRTP does not do

• Identify your endpoint
 – How do you know this is Jon Callas?
 – PKI doesn’t solve this, either.

• Upper-level VOIP security
 – CallerID protection, etc.

• Protect against attackers with arbitrarily large powers
 – “Rich Little” attack
 – “Court Reporter” attack
 – Interpolation of hash secrets in milliseconds
 – Mental Telepathy, etc.
What does ZRTP do?

• Secures media from one endpoint to another
• Allows end-users to use DH materiel to thwart MitM
• Without end-user participation, validates that the endpoint is the same
• Creates very high bar for potential MitM